2 research outputs found

    Encapsulation condition dependent photophysical properties of polypyridyl Ru(ii) complexes within a hydrogen-bonded capsule

    Get PDF
    Controlling the encapsulation equilibrium is a key strategy to affect host-guest associations. Ruthenium(ii) polypyridyl complex salts suspended in a chloroform solution of resorcin[4]arene afforded a host-guest complex which showed structured emission spectra even in the solution state. In contrast, a host-guest complex obtained through homogeneous encapsulation conditions by using soluble ruthenium(ii) polypyridyl complex salts showed broadened emission spectra which strongly depended on the amount of the host owing to the encapsulation equilibrium. These results demonstrate that a simple modulation of the encapsulation technique is indeed promising and a facile approach to control the photophysical properties of supramolecular complexes

    An Externally-Applied, Natural-Mineral-Based Novel Nanomaterial IFMC Improves Cardiopulmonary Function under Aerobic Exercise

    No full text
    Nanotechnology has widespread applications in sports; however, there are very few studies reporting the use of nanotechnology to enhance physical performance. We hypothesize that a natural-mineral-based novel nanomaterial, which was developed from Japanese hot springs, might overcome the limitations. We examined if it could enhance physical performance. We conducted a treadmill exercise test on 18 students of athletic clubs at Fukushima University, Japan, and measured heart rate, oxygen consumption, maximal oxygen consumption, CO2 production, and respiratory quotient 106 times in total. The results showed that the elevation of heart rate was significantly suppressed in the natural-mineral-based nanomaterial group, while no differences were observed in oxygen consumption, maximal oxygen consumption, CO2 production, and respiratory quotient between groups. To our knowledge, this result is the first evidence where an improvement of cardiovascular and pulmonary functions was induced by bringing a natural-mineral-based nanomaterial into contact with or close to a living body without pharmacological intervention or physical intervention. This could open new avenue of biomedical industries even in an eco-friendly direction. The precise mechanisms remain a matter for further investigation; however, we may assume that endothelial NO synthase, hemoglobin and endothelium-derived hyperpolarizing factor are deeply involved in the improvement of cardiovascular and pulmonary functions
    corecore